Maharashtra State Board

Class X Mathematics – Geometry – Part 2

Board Paper 2023

Time: 2 Hours.

Maximum Marks: 40

Note:

- (i) All questions are compulsory.
- (ii) Use of calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs IQ. No. 1(A)) only the first attempt will be evaluated and will be given credit.
- (v) For every MCQ, the correct alternative (A), (B), (C) or (D)) with sub-question number is to be written as an answer.
- (vi) Draw the proper figures for answers wherever necessary.
- (vii) The marks of construction should be clear and distinct. Do not erase them.
- (viii) Diagram is essential for writing the proof of the theorem.
- 1. (A) Four alternative answer are given for every sub question. Select the correct alternative and write the alphabet of that answer.
 - (1) If a, b, c are sides of a triangle and $a^2 + b^2 = c^2$, name the type of triangle:
 - (A) Obtuse angled triangle
 - (B) Acute angled triangle
 - (C) Right angled triangle
 - (D) Equilateral triangle
 - (2) Chords AB and CD of a circle intersect inside the circle at point E. If AE = 4, EB = 10, CE = 8, then find ED:
 - (A) 7
 - (B) 5
 - (C) 8
 - (D) 9
 - (3) Co-ordinates of origin are
 - (A) (0,0)
 - (B) (0,1)
 - (C) (1,0)
 - (D) (1,1)
 - (4) If radius of the base of cone is 7 cm and height is 24 cm, then find its slant height:
 - (A) 23 cm
 - (B) 26 cm
 - (C) 31 cm
 - (D) 25 cm

www.mathademy.com

(B) Solve the following sub-questions:

35

(1) If $\triangle ABC \sim \triangle PQR$ and $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{16}{25}$, then find AB:PQ.

(2) In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm, then find RS.

- (3) If radius of a circle is 5 cm, then find the length of longest chord of a circle.
- (4) Find the distance between the point O(0, 0) and P(3, 4).
- 2. (A) Complete the following activities (Any two):

4

4

In the above figure, $\angle L = 35^{\circ}$, find (i) m(are MN) (ii) m(are MLN) Solution: (i) $\angle I = \frac{1}{2} m(\text{arc MN}) \dots (By \text{ Inscribed Angle Theorem})$ $\therefore \square = \frac{1}{2} m(\text{arc MN})$ $\therefore 2x35 = m(\text{arc MN})$ $\therefore m(\text{arc MN}) = \square$ (ii) $\therefore m(\text{arc MLN}) = \square - m(\text{arc MN}) \dots (Definition of measure of arc})$ $= 360^{\circ} - 70^{\circ}$ $\therefore m(\text{arc MLN}) = \square$

(1)

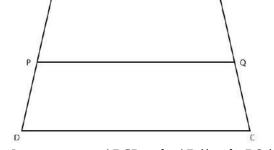
(2) Show that: $\cot \theta + \tan \theta = \csc \theta \times \sec \theta$

Solution:

 $L.H.S. = \cot \theta + \tan \theta$

$$= \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$
$$= \frac{||+||}{\sin \theta \times \cos \theta}.$$
$$= \frac{1}{\sin \theta \times \cos \theta} \qquad \dots \dots$$
$$= \frac{1}{\sin \theta} \times \frac{1}{||}$$
$$= \csc \theta \times \sec \theta$$

 \therefore L.H.S. = R.H.S.

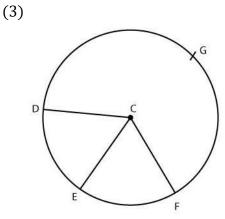

- $\therefore \cot \theta + \tan \theta = \csc \theta \times \sec \theta$
- (3) Find the surface area of a sphere of radius 7 cm. **Solution:**

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times \square^{2}$$
$$= 4 \times \frac{22}{7} \times \square$$
$$= \square \times 7$$
$$\therefore \text{ Surface area of sphere } = \square \text{ sq.cm}$$

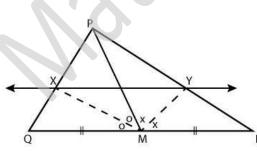
(B) Solve the following sub-questions (Any four):

8



In trapezium ABCD side AB || side PQ || side DC. AP = 15, PD = 12, QC = 14, find BQ.

(2) Find the length of the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.


www.mathademy.com

(1)

In the given figure point G, D, E, F are point of a circle with centre C, $ECF = 70^{\circ}$, m (arc DGF) = 200°. Find:

- (i) m (arc DE)
- (ii) m (arc DEF).
- (4) Show that points A(-1, -1), B(0, 1), C(1, 3) are collinear.
- (5) A person is standing at a distance of 50 m from a temple looking at its top. The angle of elevation is of 45°. Find the height of the temple.
- 3. (A) Complete the following activities (Any one): (1)

In \triangle PQR, seg PM is median. Angle bisectors of \angle PMQ and \angle PMR intersect side PQ and side PR in points X and Y respectively.

Prove that XY || QR.

Complete the proof by filling in the boxes.

Solution:

In ∆PMQ,

Ray MX is the bisector of \angle PMQ.

 $\frac{MP}{MO} = \frac{\Box}{\Box} \quad \dots \dots (I) \quad [Theorem of angle bisector]$

Similarly, in \triangle PMR, Ray MY is bisector of \angle PMR.

 $\frac{MP}{MR} = \boxed{\square} \quad \dots \dots (II) \quad [Theorem of angle bisector]$

www.mathademy.com

I^{*}lathademy®

But
$$\frac{MP}{MQ} = \frac{MP}{MR}$$
(III) [As M is the midpoint of QR]
Hence MQ = MR
 $\therefore \frac{PX}{\Box} = \frac{\Box}{YR}$ [From (I),(II) and (III)]
 $\therefore XY QR$

(2) Find the co-ordinates of point P where P is the midpoint of a line segment AB with A(-4, 2) and B(6, 2)

Solution:

Suppose $(-4, 2) = (x_1, y_1)$ and $(6, 2) = (x_2, y_2)$ and co-ordinates of P are (x, y).

∴ According to midpoint theorem,

$$x = \frac{x_1 + x_2}{2} = \frac{\Box + 6}{2} = \frac{\Box}{2} = \Box$$
$$y = \frac{y_1 + y_2}{2} = \frac{2 + \Box}{2} = \frac{4}{2} = \Box$$

 \therefore Co-ordinates of midpoint P are \Box .

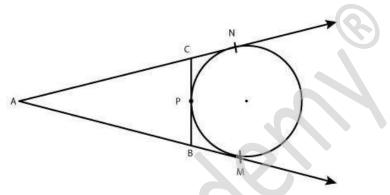
(B) Solve the following sub-questions (any two):

(1) In \triangle ABC, seg AP is a median. If BC = 18, AB² + AC² = 260, find AP.

- (2) Prove that, "Angles inscribed in the same arc are congruent."
- (3) Draw a circle of radius 3.3 cm. Draw a chord PQ of length 6.6 cm. Draw tangents to the circle at points P and Q.
- (4) The radii of circular ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm. Find its curved surface area. ($\pi = 3.14$)

4. Solve the following sub-questions (Any two):
(1) In
$$\triangle$$
ABC, seg DE || side BC, If 2A(\triangle ADE) = A(\Box DBCE), find AB:AD and show that BC
= $\sqrt{3}$ DE.

(2) Δ SHR – Δ SVU, In Δ SHR, SH = 4.5 cm, HR = 5.2 cm, SR = 5.8 cm and $\frac{\text{SH}}{\text{SV}} = \frac{3}{5}$, construct Δ SVU.


www.mathademy.com

6

- (3) An ice-cream pot has a right circular cylindrical shape. The radius of the base is 12 cm and height is 7 cm. This pot is completely filled with ice-cream. The entire ice-cream is given to the students in the form of right circular ice-cream cones, having diameter 4 cm and height is 3.5 cm. If each student is given one cone, how many students can be served?
- 5. Solve the following sub-question (Any one):

3

(1)

A circle touches side BC at point P of the \triangle ABC, from out-side of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that:

$$AM = \frac{1}{2}$$
 (Perimeter of $\triangle ABC$)

(2) Eliminate θ if $x = r \cos \theta$ and $y = r \sin \theta$