F'lathademy

Maharashtra State Board
 Class X Mathematics - Geometry - Part 2

Board Paper 2023
Time: 2 Hours.
Maximum Marks: 40

Note:

(i) All questions are compulsory.
(ii) Use of calculator is not allowed.
(iii) The numbers to the right of the questions indicate full marks.
(iv) In case of MCQs IQ. No. 1(A)) only the first attempt will be evaluated and will be given credit.
(v) For every MCQ, the correct alternative (A), (B), (C) or (D)) with sub-question number is to be written as an answer.
(vi) Draw the proper figures for answers wherever necessary.
(vii) The marks of construction should be clear and distinct. Do not erase them.
(viii) Diagram is essential for writing the proof of the theorem.

1. (A) Four alternative answer are given for every sub question. Select the correct alternative and write the alphabet of that answer.
(1) If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle:
(A) Obtuse angled triangle
(B) Acute angled triangle
(C) Right angled triangle
(D) Equilateral triangle
(2) Chords AB and CD of a circle intersect inside the circle at point E . If $\mathrm{AE}=4, \mathrm{~EB}=$ $10, \mathrm{CE}=8$, then find ED :
(A) 7
(B) 5
(C) 8
(D) 9
(3) Co-ordinates of origin are \qquad
(A) $(0,0)$
(B) $(0,1)$
(C) $(1,0)$
(D) $(1,1)$
(4) If radius of the base of cone is 7 cm and height is 24 cm , then find its slant height:
(A) 23 cm
(B) 26 cm
(C) 31 cm
(D) 25 cm

Flathademy

(B) Solve the following sub-questions:

(1) If $\Delta A B C \sim \Delta P Q R$ and $\frac{A(\triangle A B C)}{A(\Delta P Q R)}=\frac{16}{25}$, then find $A B: P Q$.
(2) $\operatorname{In} \triangle \mathrm{RST}, \angle \mathrm{S}=90^{\circ}, \angle \mathrm{T}=30^{\circ}, \mathrm{RT}=12 \mathrm{~cm}$, then find RS.
(3) If radius of a circle is 5 cm , then find the length of longest chord of a circle.
(4) Find the distance between the point $\mathrm{O}(0,0)$ and $\mathrm{P}(3,4)$.
2. (A) Complete the following activities (Any two): (1)

In the above figure, $\angle \mathrm{L}=35^{\circ}$, find
(i) m (are MN)
(ii) $\mathrm{m}($ are MLN)

Solution:
(i) $\angle \mathrm{E}=\frac{1}{2} \mathrm{~m}$ (arc MN)(By Inscribed Angle Theorem)
$\therefore \square=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{MN})$
$\therefore 2 \times 35=\mathrm{m}(\operatorname{arc} \mathrm{MN})$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{MN})=\square$
(ii)

$$
\begin{aligned}
& \therefore \mathrm{m}(\operatorname{arc} \mathrm{MLN})=\square-\mathrm{m}(\operatorname{arc} \mathrm{MN}) \ldots \ldots .(\text { Definition of measure of arc }) \\
& \\
& =360^{\circ}-70^{\circ} \\
& \therefore \mathrm{m}(\operatorname{arc} \operatorname{MLN})=\square
\end{aligned}
$$

Flathademy

(2) Show that: $\cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$

Solution:

L.H.S. $=\cot \theta+\tan \theta$

$$
\begin{aligned}
& =\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{\square+\square}{\sin \theta \times \cos \theta} .
\end{aligned}
$$

$$
=\frac{1}{\sin \theta \times \cos \theta}
$$

$$
=\frac{1}{\sin \theta} \times \frac{1}{\square}
$$

$$
=\operatorname{cosec} \theta \times \sec \theta
$$

\therefore L.H.S. $=$ R.H.S.
$\therefore \cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$
(3) Find the surface area of a sphere of radius 7 cm .

Solution:
Surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times \square^{2} \\
& =4 \times \frac{22}{7} \times \square \\
& =\square \times 7
\end{aligned}
$$

Surface area of sphere $=\square$ sq.cm
(B) Solve the following sub-questions (Any four):
(1)

In trapezium $A B C D$ side $A B \|$ side $P Q \|$ side $D C . A P=15, P D=12, Q C=14$, find $B Q$.
(2) Find the length of the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm .

|'7athademy

(3)

In the given figure point $\mathrm{G}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are point of a circle with centre $\mathrm{C}, \mathrm{ECF}=70^{\circ}, \mathrm{m}$ $(\operatorname{arc} \mathrm{DGF})=200^{\circ}$.
Find:
(i) $m(\operatorname{arc} D E)$
(ii) $\mathrm{m}(\operatorname{arc} \mathrm{DEF})$.
(4) Show that points $A(-1,-1), B(0,1), C(1,3)$ are collinear.
(5) A person is standing at a distance of 50 m from a temple looking at its top. The angle of elevation is of 45°. Find the height of the temple.
3. (A) Complete the following activities (Any one):
(1)

In $\triangle \mathrm{PQR}$, eeg PM is median. Angle bisectors of $\angle \mathrm{PMQ}$ and $\angle \mathrm{PMR}$ intersect side PQ and side $P R$ in points X and Y respectively.
Prove that XY || QR.
Complete the proof by filling in the boxes.

Solution:

In $\triangle \mathrm{PMQ}$,
Ray MX is the bisector of $\angle \mathrm{PMQ}$.
$\frac{\mathrm{MP}}{\mathrm{MQ}}=\frac{\square}{\square}$
......(I) [Theorem of angle bisector]
Similarly, in $\triangle \mathrm{PMR}$, Ray MY is bisector of $\angle \mathrm{PMR}$.
$\frac{\mathrm{MP}}{\mathrm{MR}}=\frac{\square}{\square} \quad \ldots .$. (II) \quad [Theorem of angle bisector]

「浐athademy

But $\frac{\mathrm{MP}}{\mathrm{MQ}}=\frac{\mathrm{MP}}{\mathrm{MR}} \quad \ldots .$. (III) $[$ As M is the midpoint of QR]
Hence MQ = MR
$\therefore \frac{\mathrm{PX}}{\square}=\frac{\square}{\mathrm{YR}}$
$\ldots . . .[\operatorname{From}(\mathrm{I}),(\mathrm{II})$ and (III) $]$
$\therefore \mathrm{XY} \mathrm{QR}$
(2) Find the co-ordinates of point P where P is the midpoint of a line segment AB with $A(-4,2)$ and $B(6,2)$
Solution:

Suppose $(-4,2)=\left(x_{1}, y_{1}\right)$ and $(6,2)=\left(x_{2}, y_{2}\right)$ and co-ordinates of P are (x, y).
\therefore According to midpoint theorem,

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}}{2}=\frac{\square+6}{2}=\frac{\square}{2}=\square \\
& y=\frac{y_{1}+y_{2}}{2}=\frac{2+\square}{2}=\frac{4}{2}=\square
\end{aligned}
$$

\therefore Co-ordinates of midpoint P are \square.
(B) Solve the following sub-questions (any two):
(1) In $\triangle A B C$, seg $A P$ is a median. If $B C=18, A B^{2}+A C^{2}=260$, find $A P$.
(2) Prove that, "Angles inscribed in the same arc are congruent."
(3) Draw a circle of radius 3.3 cm . Draw a chord PQ of length 6.6 cm . Draw tangents to the circle at points P and Q .
(4) The radii of circular ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm . Find its curved surface area. $(\pi=3.14)$
4. Solve the following sub-questions (Any two):
(1) In $\triangle A B C$, seg $D E \|$ side $B C$, If $2 A(\triangle A D E)=A(\square D B C E)$, find $A B: A D$ and show that $B C$ $=\sqrt{3} \mathrm{DE}$.
(2) $\Delta \mathrm{SHR}-\Delta \mathrm{SVU}, \operatorname{In} \Delta \mathrm{SHR}, \mathrm{SH}=4.5 \mathrm{~cm}, \mathrm{HR}=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\frac{\mathrm{SH}}{\mathrm{SV}}=\frac{3}{5}$, construct Δ SVU.

「7athademy

(3) An ice-cream pot has a right circular cylindrical shape. The radius of the base is 12 cm and height is 7 cm . This pot is completely filled with ice-cream. The entire icecream is given to the students in the form of right circular ice-cream cones, having diameter 4 cm and height is 3.5 cm . If each student is given one cone, how many students can be served?
5. Solve the following sub-question (Any one):
(1)

A circle touches side BC at point P of the $\triangle \mathrm{ABC}$, from out-side of the triangle. Further extended lines $A C$ and $A B$ are tangents to the circle at N and M respectively. Prove that:
$A M=\frac{1}{2}($ Perimeter of $\triangle A B C)$
(2) Eliminate θ if $x=r \cos \theta$ and $y=r \sin \theta$

