Maharashtra State Board

Class X Mathematics – Geometry – Paper II

Board Paper 2019

Time: 2 hours

Maximum Marks: 40

4

4

Note:

- (i) All questions are compulsory
- (ii) Use of calculator is not allowed
- (iii) Figures to the right of questions indicate full marks.
- (iv) Draw proper figures for answers wherever necessary
- (v) The marks of construction should be clear and distinct. Do not erase them.
- (vi) While writing any proof, drawing relevant figure is necessary. Also the proof should be consistent, with the figure.

1. (A) Solve the following questions (Any four) :

- (i) If $\triangle ABC \sim \triangle PQR$ and $\angle A = 60^\circ$, then $\angle P = ?$
- (ii) In right angled $\triangle ABC$, if $\angle B = 90^\circ$, AB = 6, BC = 8, then find AC.
- (iii) Write the length of largest chord of a circle with radius 3.2 cm.
- (iv) From the given number line, find d(A,B) :

- (v) Find the value of sin $30^{\circ} + \cos 60^{\circ}$.
- (vi) Find the area of a circle of radius 7 cm.

(B) Solve the following questions (Any *two*):

- (i) Draw seg AB of length 5.7 cm and bisect it.
- (ii) In right-angled triangle PQR, if $\angle P = 60^\circ$, $\angle R = 30^\circ$ and PR = 12, then find the values of PQ and QR.
- (iii) In a right circular cone, if perpendicular height is 12 cm and radius is 5 cm, then find its slant height.

2.	(A)	Choose the correct alte	mative: 4	
		(i) \triangle ABC and \triangle DEF are	equilateral triangles. If A 4 ABC): A (ADEF) = 1: 2 and	l
		AB = 4, then what is the length of DE?		
		(a) 2√2	(b) 4	
		(c) 8	(d) 4\\[\overline{\beta}\]	
		(ii) Out of the following which is a Pythagorean triplet?		
		(a) (5,12,14)	(b) (3,4,2)	
		(c) (8,15,17)	(d) (5,5,2)	
		(iii) ∠ACB is inscribed	in arc ACB of a circle with centre O. if $\angle ACB = 65^{\circ}$,	
		find m (arc ACB):		
		(a) 130°	(b) 295°	
		(c) 230°	(d) 65°	
		(iv) $1 + \tan^2 \theta = ?$		
		(a) Sin ² θ	(b) $\sec^2\theta$	
		(c) Cosec ² θ	(d) $\cot^2\theta$	

(B) Solve the following questions (Any two) :

- (i) Construct tangent to a circle with centre A and radius 3.4 cm at any point P on it.
- (ii) Find slope of a line passing through the points A (3, 1) and B (5, 3).
- (iii) Find the surface area of a sphere of radius 3.5 cm.

3. (A) Complete the following activities (Any two) :

(i)

In \triangle ABC, ray BD bisects \angle ABC.

If A -D-C, A-E-B and seg ED || side BC, then prove that:

www.mathademy.com

4

4

$$\frac{AB}{BC} = \frac{AE}{EB}$$

Proof:

In \triangle ABC, ray BD is bisector of \angle ABC.

$$\therefore \qquad \frac{AB}{BC} = \boxed{\dots \dots} \qquad (I) \text{ (by angle bisector theorem)}$$

In \triangle ABC, seg DE || side BC.

(ii)

Prove that, angles inscribed in the same arc are congruent.

Given: \angle PQR and \angle PSR are inscribed in the same arc.

Arc PXR is intercepted by the angles

To prove:

Proof

$$m \pounds QR = \frac{1}{2}m(\text{arc PXR}) \dots (I)$$

$$m \angle \boxed{} = \frac{1}{2}m(\text{arc PXR}) \dots (II)$$

$$m \angle \boxed{} = m P \pounds R \quad (\text{from I and II})$$

$$\therefore \ \angle PQR \cong \angle PSR \text{ (Angles equal in measure are congruent)}$$

(iii) How many solid cylinders of radius 6 cm and height 12 cm can be made by melting a solid sphere of radius 18 cm? Activity: Radius of the sphere, r = 18 cm For cylinder, radius R = 6 cm, height H = 12 cm Volume of the sphere Number of cylinders can be made = πr^3 imes 18 imes 18 imes 18 (B) Solve the following questions (Any two): 4 (i) D C In right-angled Δ ABC; BD \perp AC. If AD = 4, DC = 9, then find BD. (ii) Verify whether the following points are collinear or not : A (1,-3), B (2,-5), C (-4, 7).

(iii) if $\sec \theta = \frac{25}{7}$, then find the value of $\tan \theta$

4. Solve the following questions (Any three) :

(i) In \triangle PQR, seg PM is a median, PM = 9 and PQ² + PR² = 290. Find the length of QR. (ii)

In the given figure, O is centre of circle. $\angle QPR = 70^{\circ}$ and m (arc PYR) = 160°, then find the value of each of the following:

- (a) m (arc QXR)
- (b)∠QOR
- (c) ∠PQR
- (iii) Draw a circle with radius 4.2 cm. Construct tangents to the circle from a point at a distance of 7 cm from the centre.
- (iv) When an observer at a distance of 12 cm m from a tree looks at the top of the tree, the angle of elevation is 60°. What is the height of the tree? $(\sqrt{3} = 1.73)$
- 5. Solve the following questions (Any one) :

4

A circle with centre P is inscribed in the Δ ABC. Side AB, side BC and side AC touch the circle at points L, M and N respectively. Radius of the circle is r.

Prove that:

$$A(\Delta ABC) \frac{1}{2} (AB + BC + AC) \times r$$

In \triangle ABC, \angle ACB = 90°. Seg CD \perp side AB and seg CE is angle bisector of \angle ACB.

Prove that:

$$\frac{AD}{BD} = \frac{AE^2}{BE^2}$$

6. Solve the following questions (Any one) :

(i) Show that the points (2, 0), (-2, 0) and (0, 2) are the vertices of triangle. Also state with reason the type of the triangle.

(ii)

In the above figure, \leq XLMT is a rectangle is a rectangle. LM = 21 cm, XL = 10.5 cm. diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.